物理下册知识点归纳8篇 大学物理基础下册知识点总结

时间:2022-10-16 15:17:00 工作总结

  下面是范文网小编整理的物理下册知识点归纳8篇 大学物理基础下册知识点总结,供大家品鉴。

物理下册知识点归纳8篇 大学物理基础下册知识点总结

物理下册知识点归纳1

  第六章 物质的物理属性

  一、物体的质量

  1、定义——物体所含物质的多少叫做物体的质量,通常用字母m表示。在国际单位制中,质量的单位是千克,符号为㎏。常用的质量单位还有克(g)、毫克(mg)和吨(t)。换算关系为:

  1t=1000㎏1㎏=1000g1g=1000mg

  测量工具:天平托盘天平使用说明

  ①、使用天平时,应将天平放在水平工作台上。

  ②、使用天平时,应先将游码移至标尺左端的“0”刻度线处,再调节横梁上的平衡螺母,使指针对准分度盘中央的刻度线。

  ③、测量物体质量时,应将物体放在天平的左盘;用镊子向右盘加减砝码;移动游码,使指针对准分度盘中央的刻度线。此时,右盘中砝码的总质量与游码所示质量之和等于所测物体的质量。

  注意:

  A、用天平测量物体的质量时,待测物体的总质量不能超过天平的测量值。向右盘里加减砝码时应轻拿轻放。

  B、天平与砝码应保持干燥、清洁,不要把潮湿的物品或化学药品直接放在天平的托盘中,不要用手直接取砝码。

  2、判断天平横梁是否平衡有2种方法:一种是等指针完全静止下来,使指针对准分度盘中央刻度线;另一种是指针在相对于分度盘中央刻度线左右摆动的幅度相等。

  3、质量是物体的一种物理属性

  当物体的状态、温度、形状、位置发生改变,但它们所含物质的多少并没有改变,质量不随物体的状态、温度、形状、位置的改变而改变。

  二、用天平测物体的质量

  测量方法:当被测物体的质量较小时,可以先测量多个物体的总质量,然后算出一个物体的质量。这种“测多算少”的方法能使测量的结果更精确。

  三、物质的密度

  1、定义——单位体积某种物质的质量叫做这种物质的密度。

  密度=质量体积

  通常,用ρ表示密度,m表示质量,V表示体积,则密度的公式可以写做:mρ=在国际单位制中,质量的单位是千克,体积的单位是米,则密度的单位是千克/米,符号为㎏/m,读作千克每立方米。密度的单位有时用克/厘米,符号为g/cm。

  2、在常温、常压下,一些物质的密度(单位:㎏/m)

  四、密度知识的应用

  鉴别物质——密度是物质的一种物理属性,可以用测量密度的方法来鉴别物质。

  除了用于鉴别物质外,还可以在已知密度和体积的情况下,利用密度公式计算该物体的质量;或者在已知密度和质量的情况下,计算形状不规则物体的体积。

  五、物质的物理属性

  物质的物理属性包括:状态、硬度、质量、密度、透光性、导热性、导电性、弹性、磁性等。

  第七章 从粒子到宇宙

  一、分子世界

  1、物质是由大量分子组成的,分子间有空隙。分子处在永不停息的运动中。2、分子间不仅存在吸引力,而且还存在排斥力。固体和液体很难被压缩。

  二、静电现象

  1、用摩擦的方式使物体带电,叫做摩擦起电。

  2、用丝绸摩擦过的玻璃棒所带的电荷称为正电荷;把皮毛摩擦过的橡胶棒所带的电荷称为负电荷。同种电荷相互排斥,异种电荷相互吸引。

  3、失去电子的物体因缺少电子而带正电,得到电子的物体因为有多余电子而带等量的负电。

  4、摩擦起电并不是创造了电荷,而只是将电子由一个物体转移到另一个物体。

  三、更小的微粒

  分子由原子构成。

  原子是由带负电的核外电子和带正电的原子核构成的。

  原子核是由质子和中子构成的,统称为核子。质子带正电荷,中子不带电。

  第八章 力

  一、力弹力

  1、物体对物体的作用称为力。一个叫施力物体,一个叫受力物体。

  2、形变的物体在撤去外力后能恢复原状,这种形变叫做弹性形变。使物体发生弹性形变的外力越大,物体的形变就越大。(在一定范围内,弹簧的伸长量与拉力成正比)。

  3、国际单位制中,力的单位是牛顿,符号位“N”。

  弹簧测力计主要由弹簧、秤钩、指针和刻度盘组成。弹簧测力计的使用方法:

  ⑴了解弹簧测力计的量程,使用时所测力的大小应在量程范围内。⑵观察弹簧测力计的分度值。

  ⑶将弹簧测力计按测量时所需的位置放好,检查指针是否在“0”刻度线处,若不在,应校正“0”点。

  ⑷测量时,要使弹簧测力计的受力方向沿着弹簧的轴线方向;观察时,视线必须与刻度盘垂直。

  二、重力力的示意图

  1、由于地球的吸引而使物体受到的力叫做重力。物体所受重力的大小与它的质量成正比。物体所受的重力的方向是竖直向下的。

  G表示物体所受的重力,m表示物体的质量,公式G=mg表示物体所受的重力与质量的关系。公式G=mg中,g表示物体所受的重力与质量之比,约等于9.8N/㎏,在粗略计算中,可取g=10N/㎏。

  2、力的大小、方向和作用点称为力的三要素。对于物体所受的任何力都可以用这种方法来表示,这种表示力的图称为力的示意图。

  三、摩擦力

  1、摩擦:静摩擦、滑动摩擦、滚动摩擦。摩擦力:静摩擦力、滑动摩擦力。

  2、一个物体在另一个物体表面上滑动时,会受到阻碍它运动的力,这种力叫做滑动摩擦力。滑动摩擦力的大小与接触面的粗糙程度、压力的大小有关,接触面越粗糙、压力越大,滑动摩擦力越大。在一定范围内,滑动摩擦力的大小与接触面积的大小无关。

  3、减小物体接触面间的压力和粗糙程度、在接触面间加润滑剂或用滚动代替滑动等可减小摩擦。

  四、力的作用是相互的

  一个物体对另一个物体有力的作用时,另一个物体也同时对这个物体有力的作用,即力的作用是相互的。

  第九章 力与运动

  一、二力平衡

  1、物体在几个力的作用下保持静止或做匀速直线运动,那么该物体处于平衡状态。当物体在两个力的作用下处于平衡状态时,就称为这两个力相互平衡,简称二力平衡。

  2、二力平衡的条件:当作用在同一个物体上的两个力大小相等、方向相反,且作用在同一直线上时,两个力才能平衡。

  二、牛顿第一定律

  1、牛顿第一定律:一切物体在没有受到力的作用时,总保持匀速直线运动或静止状态。

  2、物体具有保持运动状态不变的性质称为惯性。一切物体都有惯性,惯性式物体的物理属性。

  三、力与运动的关系

  1、力是改变物体运动状态的原因。

  2、物体在二力平衡的条件下,保持静止或匀速直线运动状态。

  3、物体所受的力不平衡时,其运动状态会发生改变。

物理下册知识点归纳2

  一、匀速圆周运动

  ①.轨迹是圆周的运动叫圆周运动.在相等的时间内通过的_______都相等的圆周运动叫匀速(率)圆周运动。

  ②.描述匀速圆周运动的物理量:

  【线速度】,计算公式 或。

  线速度方向时刻在改变,匀速圆周运动是一般变速运动。

  【角速度】定义式:(一定要用弧度用单位)。计算公式: 或ω=v/r 或。

  【周期】做匀速圆周运动的物体运动一周所用的时间,T=1/n 。

  ③.在处理不打滑的皮带传问题时,要从"两个相等"入手。

  皮带相连的两轮缘上各点的__________相等;同一轮上各点的________相等。

  二、机械振动

  【回复力】回复力是按力的________(性质、作用效果)命名的;

  【简谐运动】

  物体在跟振动位移大小成_____,方向总是指向________的回复力作用下的振动叫简谐运动.(即:F回=-Kx.)

  "振动物体在某时刻的位移"是指从____位置指向___________位置的有向线段,振动位移X的方向与振动物体在该点的速度方向_______(有关、无关)

  【简谐运动的规律】

  10.简谐振动的加速度a=________.a总与X___(指向______位置).当振动物体向着平衡位置运动时,a与V___向,物体做加速度逐渐____的__速运动,__________能转化为___能(机械能守恒);当振动体远离平衡位置运动时,a与V___向,物体做加速度逐渐______的__速运动,__能转化为__能(机械能守恒).20.在位移大小相等的位置处(即关于平衡位置对称的两点)有大小相等的回复力、速率、加速度、动能、势能,即具有对称性.

  【描述简谐运动的物理量】

  10振幅(A):振动物体离开平衡位置的_________,即位移的最大值.是标量,是表示振动范围或_____的物理量.对简谐振动,振幅不随时间而变.

  20周期(T):完成一次全振动所经历的时间.是表示振动快慢的物理量.

  "完成一次全振动"是指振动物体的位移和速度大小和方向经历一定时间后又重复地回到了原来的值.

  30频率(f):在单位时间内完成全振动的次数.也是表示振动快慢的物理量.f=1/T,单位:1Hz=1/秒.

  固有周期:简谐运动的周期与_________无关,只由振动系统本身决定的

  40做简谐振动的物体在t时间内通过的路程S=__________.

  4、简谐振动的图象

  ①.简谐振动的图象X-t是一条正弦(余弦)曲线.它表示振动物体在各个时刻的位移.

  ②.由振动图象可求:

  10任一时刻振动的位移X(t);20振幅A;

  30周期T(频率f);

  40任一时刻振动的速度方向及大小变化的趋势.

  50任一时刻振动的加速度方向及大小变化的趋势.

  三、机械波

  1.定义:_________在介质中的传播,形成机械波.

  【注意】①机械波向外传播_______,介质本身并不_______迁移.

  ②产生机械波的必要条件是:10产生_______的波源;20有传播_______的介质

  ③【横波与纵波】:振动方向与波的传播方向____的波叫横波.在横波中,最凸起处叫波峰,凹下的最低处叫波谷;振动方向与波的传播方向在___________的波叫纵波.有明显的质点分布最密集处(叫密部)和质点分布最疏处(叫疏部).

  2.波长(λ)、波速(ν)和波的频率(f)

  ①波长:两个相邻的,在振动过程中对平衡位置的位移______相等的质点间的距离.在一个周期的时间内,振动在介质中传播的距离____波长.故有:v=S/t=_____.或v=______.

  ②波速:即 "__________________"传播的速度.(不是质点的振动速度)它由传播波的____决定,在同一均匀介质中波速恒定,____________随f和λ变化

  ③频率:就是_________的振动频率.同一列波从一种介质进入另一种介质,________保持不变.

  3.波的图象

  ①定义:用横坐标(X)表示在波的传播方向上介质各质点的___位置,纵坐标(Y)表示________各质点偏离____位置的位移.简谐波的波形是正弦(或余弦)曲线.

  ②波形、某质点的振动方向、波的传播方向三者间的关系是:某质点的振动方向和波的传播方向位于波形图线的同一侧侧。三者知其二,可推知第三者.(同侧法)

  ③由波的图象可求:10、波长λ;20、波的振幅A;

  30、推求再经Δt时间末或前Δt时间初时的波形(平移法);

  40、判断波的传播方向或某质点的振动方向.

物理下册知识点归纳3

  1.力

  力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因。力是矢量。

  2.重力

  (1)重力是由于地球对物体的吸引而产生的。

  [注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力。

  但在地球表面附近,可以认为重力近似等于万有引力

  (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g

  (3)重力的方向:竖直向下(不一定指向地心)。

  (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上。

  3.弹力

  (1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的。

  (2)产生条件:①直接接触;②有弹性形变。

  (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体。在点面接触的情况下,垂直于面;

  在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面。

  ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等。

  ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆。

  (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解。弹簧弹力可由胡克定律来求解。

  ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx。k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m。

  4.摩擦力

  (1)产生的条件:

  1、相互接触的物体间存在压力;

  2、接触面不光滑;

  3、接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可。

  (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反。

  (3)判断静摩擦力方向的方法:

  1、假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同。然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向。

  2、平衡法:根据二力平衡条件可以判断静摩擦力的方向。

  (4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解。

  1、滑动摩擦力大小:利用公式f=μFN进行计算,其中FN是物体的正压力,不一定等于物体的重力,甚至可能和重力无关。或者根据物体的运动状态,利用平衡条件或牛顿定律来求解。

  2、静摩擦力大小:静摩擦力大小可在0与fmax之间变化,一般应根据物体的运动状态由平衡条件或牛顿定律来求解。

  5.物体的受力分析

  1、确定所研究的物体,分析周围物体对它产生的作用,不要分析该物体施于其他物体上的力,也不要把作用在其他物体上的力错误地认为通过“力的传递”作用在研究对象上。

  2、按“性质力”的顺序分析。即按重力、弹力、摩擦力、其他力顺序分析,不要把“效果力”与“性质力”混淆重复分析。

  3、如果有一个力的方向难以确定,可用假设法分析。先假设此力不存在,想像所研究的物体会发生怎样的运动,然后审查这个力应在什么方向,对象才能满足给定的运动状态。

  6.力的合成与分解

  1、合力与分力:如果一个力作用在物体上,它产生的效果跟几个力共同作用产生的效果相同,这个力就叫做那几个力的合力,而那几个力就叫做这个力的分力。

  2、力合成与分解的根本方法:平行四边形定则。

  3、力的合成:求几个已知力的合力,叫做力的合成。

  共点的两个力(F1和F2)合力大小F的取值范围为:|F1-F2|≤F≤F1+F2。

  4、力的分解:求一个已知力的分力,叫做力的分解(力的分解与力的合成互为逆运算)。

  在实际问题中,通常将已知力按力产生的实际作用效果分解;为方便某些问题的研究,在很多问题中都采用正交分解法。

  7.共点力的平衡

  1、共点力:作用在物体的同一点,或作用线相交于一点的几个力。

  2、平衡状态:物体保持匀速直线运动或静止叫平衡状态,是加速度等于零的状态。

  3、★共点力作用下的物体的平衡条件:物体所受的合外力为零,即∑F=0,若采用正交分解法求解平衡问题,则平衡条件应为:∑Fx=0,∑Fy=0。

  4、解决平衡问题的常用方法:隔离法、整体法、图解法、三角形相似法、正交分解法等等。

  (1)极性分子之间

  极性分子的正负电荷的重心不重合,分子的一端带正电荷,另一端带负电荷。当极性分子相互接近时,由于同极相斥,异极相吸,使分子在空间定向排列,相互吸引而更加接近,当接近到一定程度时,排斥力同吸引力达到相对平衡。极性分子之间按异极相邻的状态取向。

  (2)极性分子与非极性分子之间

  非极性分子的正负电荷重心是重合的,当非极性分子与极性分子相互接近时,由于极性分子电场的影响,使非极性分子的电子云发生“变形”,从而使原来的非极性分子产生极性。这样,非极性分子与极性分子之间也就产生了相互作用力。极性分子对非极性分子有诱导作用。

  (3)非极性分子之间

  非极性分子间不可能产生上述两种作用力,那又是怎样产生作用力的呢?

  我们说非极性分子的正负电荷重心重合是从整体上讲的。但由于核外电子是绕核高速运动的,原子核也在不断振动之中,原子核外的电子对原子核的相对位置会经常出现瞬间的不对称,正负电荷重心经常出现瞬间的不重合,也就是说非极性分子经常产生瞬时极性,从而使非极性分子间也产生了相互吸引力。

  从上述的分析可以看出,无论什么分子之间都存在着相互吸引力,即范德华力。范德华力从本质上看,是一种电性吸引力。

  1.冲量

  物体所受外力和外力作用时间的乘积;矢量;过程量;I=Ft;单位是N·s。

  2.动量

  物体的质量与速度的乘积;矢量;状态量;p=mv;单位是kg·m/s;1kg·m/s=1N·s。

  3.动量守恒定律

  一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变。

  4.动量守恒定律成立的条件

  系统不受外力或者所受外力的矢量和为零;内力远大于外力;如果在某一方向上合外力为零,那么在该方向上系统的动量守恒。

  5.动量定理

  系统所受合外力的冲量等于动量的变化;I=mv-mv。

  6.反冲

  在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化;系统动量守恒。

  7.碰撞

  物体间相互作用持续时间很短,而物体间相互作用力很大;系统动量守恒。

  8.弹性碰撞

  如果碰撞过程中系统的动能损失很小,可以略去不计,这种碰撞叫做弹性碰撞。

  9.非弹性碰撞

  碰撞过程中需要计算损失的动能的碰撞;如果两物体碰撞后黏合在一起,这种碰撞损失的动能最多,叫做完全非弹性碰撞。

物理下册知识点归纳4

  第九章 压强

  液体具有流动性,对容器侧壁有压强。

  2、液体压强的特点:

  1)液体对容器的底部和侧壁有压强, 液体内部朝各个方向都有压强;

  2)各个方向的压强随着深度增加而增大;

  3)在同一深度,各个方向的压强是相等的;

  4)在同一深度,液体的压强还与液体的密度有关,液体密度越大,压强越大。

  3、液体压强的公式:P=gh

  注意: 液体压强只与液体的密度和液体的深度有关,而与液体的体积、质量无关。与浸入液体中物体的密度无关(深度不是高度)

  当固体的形状是柱体时,压强也可以用此公式进行推算

  计算液体对容器的压力时,必须先由公式P=gh算出压强,再由公式 P=F/S,得到压力 F=PS 。

  4、连通器:上端开口、下端连通的容器。

  特点:连通器里的液体不流动时, 各容器中的液面总保持相平, 即各容器的液体深度总是相等。

  应用举例: 船闸、茶壶、锅炉的水位计。

  9.3、大气压强

  1、大气对浸在其中的物体产生的压强叫大气压强,简称大气压。

  2、产生原因:气体受到重力,且有流动性,故能向各个方向对浸于其中的物体产生压强。

  3、著名的证明大气压存在的实验:马德堡半球实验

  其它证明大气压存在的现象:吸盘挂衣钩能紧贴在墙上、利用吸管吸饮料。

  4、首次准确测出大气压值的实验:托里拆利实验。

  一标准大气压等于76c高水银柱产生的压强,即P0=1.013×105Pa,在粗略计算时,标准大气压可以取105帕斯卡,约支持10高的水柱。

  5、大气压随高度的增加而减小,在海拔3000米内,每升高10,大气压就减小100Pa;大气压还受气候的影响。

  6、气压计和种类:水银气压计、金属盒气压计(无液气压计)

  7、大气压的应用实例:抽水机抽水、用吸管吸饮料、注射器吸药液。

  8、液体的沸点随液体表面的气压增大而增大。(应用:高压锅)

  9.4、流体压强与流速的关系

  1、物理学中把具有流动性的液体和气体统称为流体。

  2、在气体和液体中,流速越大的位置,压强越小。

  3、应用:

  1)乘客候车要站在安全线外;

  2)飞机机翼做成流线型,上表面空气流动的速度比下表面快,因而上表面压强小,下表面压强大,在机翼上下表面就存在着压强差,从而获得向上的升力;

物理下册知识点归纳5

  电场中两点的电势之差叫电势差,依教材要求,电势差都取绝对值,知道了电势差的绝对值,要比较哪个点的电势高,需根据电场力对电荷做功的正负判断,或者是由这两点在电场线上的位置判断。

  场强方向处处相同,场强大小处处相等的区域称为匀强电场,匀强电场中的电场线是等距的平行线,平行正对的两金属板带等量异种电荷后,在两极之间除边缘外就是匀强电场。

  在匀强电场中电势差与场强之间的关系是,公式中的是沿场强方向上的距离。

  在匀强电场中平行线段上的电势差与线段长度成正比

  带电粒子在匀强电场中的运动

  (1)带电粒子在电场中的运动,综合了静电场和力学的知识,分析方法和力学的分析方法基本相同:先分析受力情况,再分析运动状态和运动过程(平衡、加速或减速,是直线还是曲线),然后选用恰当的规律解题。

  (2)在对带电粒子进行受力分析时,要注意两点

  a要掌握电场力的特点。如电场力的大小和方向不仅跟场强的大小和方向有关,还与带电粒子的电量和电性有关;在匀强电场中,带电粒子所受电场力处处是恒力;在非匀强电场中,同一带电粒子在不同位置所受电场力的大小和方向都可能不同。

  b是否考虑重力要依据具体情况而定:基本粒子:如电子、质子、粒子、离子等除有要说明或明确的暗示以外,一般都不考虑重力(但并不忽略质量)。带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或明确的暗示以外,一般都不能忽略重力。

  (3)、带电粒子的加速(含偏转过程中速度大小的变化)过程是其他形式的能和功能之间的转化过程。解决这类问题,可以用动能定理,也可以用能量守恒定律。

物理下册知识点归纳6

  1、首先发现电流的磁效应的科学家:丹麦的奥斯特

  2、磁场(磁感应强度B)方向:与小磁针北极受力方向相同,也是磁感线的切线方向。

  3、安培定则(右手螺旋定则):判定电流产生的磁场方向

  4、安培力:通电导体(电流)在磁场中所受的力通常叫安培力

  (1)方向:用左手定则判定(2)大小:F=BIL(B⊥I),F=0(B‖I)

  通电直导线所受安培力的方向和磁场方向、电流方向之间的关系,可以用左手定则来判定:伸开左手,使大拇指跟其余四个手指垂直,并且都和手掌在一个平面内,把手放入磁场中,让磁感线垂直穿入手心,并使伸开的四指指向电流的方向,那么,大拇指所指的方向就是通电导线在磁场中所受安培力的方向。注意:F安⊥B

  5、洛仑兹力:磁场对运动电荷的作用力。

  (1)F络=0(B‖v)(2)方向:用左手定则

  洛仑兹力方向用左手定则来判定:伸开左手,使大拇指跟其余四个手指垂直,并且都和手掌在一个平面内,把手放入磁场中,让磁感线垂直穿入手心,并使伸开的四指指向正电荷的运动方向(负电荷,四指指向负电荷的运动的反方向),那么,大拇指所指的方向就是运动电荷在磁场中所受洛仑兹力力的方向。

物理下册知识点归纳7

  一.气体的性质公式总结

  1.气体的状态参量:

  温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志

  热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}

  体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL

  压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:

  1.atm=1.013×105Pa=76cmHg(1Pa=1N/m2)

  2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大

  3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}

  注:

  (1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;

  (2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。

  二.运动和力公式总结

  1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止

  2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}

  3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}

  4.共点力的平衡:F合=0,推广 {正交分解法、三力汇交原理}

  5.超重:FN>G,失重:FN

  6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕

  注:

  平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。

  三.力的合成与分解公式总结

  1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)

  2.互成角度力的合成:

  F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2

  3.合力大小范围:|F1-F2|≤F≤|F1+F2|

  4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)

  注:

  (1)力(矢量)的合成与分解遵循平行四边形定则;

  (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;

  (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;

  (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;

  (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

  四.常见的力公式总结

  1.重力:G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)

  2.胡克定律:F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}

  3.滑动摩擦力:F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}

  4.静摩擦力:0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)

  5.万有引力:F=Gm1m2/r2 (G=6.67×10-11N m2/kg2,方向在它们的连线上)

  6.静电力:F=kQ1Q2/r2 (k=9.0×109N m2/C2,方向在它们的连线上)

  7.电场力:F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)

  8.安培力:F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)

  9.洛仑兹力:f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)

  注:

  (1)劲度系数k由弹簧自身决定;

  (2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;

  (3)fm略大于μFN,一般视为fm≈μFN;

  (4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;

  (5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);

  (6)安培力与洛仑兹力方向均用左手定则判定。

  五.万有引力公式总结

  1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}

  2.万有引力定律:F=Gm1m2/r2 (GG=6.67×10-11N m2/kg2,方向在它们的连线上)

  3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}

  4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}

  5.第一(二、三)宇宙速度:V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s

  6.地球同步卫星:GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}

  注:

  (1)天体运动所需的向心力由万有引力提供,F向=F万;

  (2)应用万有引力定律可估算天体的质量密度等;

  (3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;

  (4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);

  (5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

  六.匀速圆周运动公式总结

  1.线速度V=s/t=2πr/T

  2.角速度ω=/t=2π/T=2πf

  3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合

  5.周期与频率:T=1/f

  6.角速度与线速度的关系:V=ωr

  7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)

  8.主要物理量及单位:弧长(s):米(m);角度():弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。

  注:

  (1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;

  (2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大

  七.平抛运动公式总结

  1.水平方向速度:Vx=Vo

  2.竖直方向速度:Vy=gt

  3.水平方向位移:x=Vot

  4.竖直方向位移:y=gt2/25.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)

  6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2,合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0

  7.合位移:s=(x2+y2)1/2,位移方向与水平夹角α:tgα=y/x=gt/2Vo

  8.水平方向加速度:ax=0;竖直方向加速度:ay=g

  注:

  (1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;

  (2)运动时间由下落高度h(y)决定与水平抛出速度无关;

  (3)θ与β的关系为tgβ=2tgα;

  (4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

  八.竖直上抛运动公式总结

  1.位移s=Vot-gt2/2

  2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)

  3.有用推论Vt2-Vo2=-2gs

  4.上升最大高度Hm=Vo2/2g(抛出点算起)

  5.往返时间t=2Vo/g (从抛出落回原位置的时间)

  注:

  (1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;

  (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;

  (3)上升与下落过程具有对称性,如在同点速度等值反向等。

  九.自由落体运动公式总结

  1.初速度Vo=0

  2.末速度Vt=gt

  3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh

  注:

  (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;

  (2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

  十.匀变速直线运动公式总结

  1.平均速度V平=s/t(定义式)

  2.有用推论Vt2-Vo2=2as

  3.中间时刻速度Vt/2=V平=(Vt+Vo)/2

  4.末速度Vt=Vo+at

  5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2

  6.位移s=V平t=Vot+at2/2=Vt/2t

  7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}

  8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}

  9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

  注:

  (1)平均速度是矢量;

  (2)物体速度大,加速度不一定大;

  (3)a=(Vt-Vo)/t只是量度式,不是决定式。

  十一.有关摩擦力的知识总结

  1、摩擦力定义:当一个物体在另一个物体的表面上相对运动(或有相对运动的趋势)时,受到的阻碍相对运动(或阻碍相对运动趋势)的力,叫摩擦力,可分为静摩擦力和滑动摩擦力。

  2、摩擦力产生条件:①接触面粗糙;②相互接触的物体间有弹力;③接触面间有相对运动(或相对运动趋势)。

  说明:三个条件缺一不可,特别要注意“相对”的理解。

  3、摩擦力的方向:

  ①静摩擦力的方向总跟接触面相切,并与相对运动趋势方向相反。

  ②滑动摩擦力的方向总跟接触面相切,并与相对运动方向相反。

  说明:

  (1)“与相对运动方向相反”不能等同于“与运动方向相反”。

  滑动摩擦力方向可能与运动方向相同,可能与运动方向相反,可能与运动方向成一夹角。

  (2)滑动摩擦力可能起动力作用,也可能起阻力作用。

  4、摩擦力的大小:

  (1)静摩擦力的大小:

  ①与相对运动趋势的强弱有关,趋势越强,静摩擦力越大,但不能超过最大静摩擦力,即0≤f≤fm 但跟接触面相互挤压力FN无直接关系。具体大小可由物体的运动状态结合动力学规律求解。

  ②最大静摩擦力略大于滑动摩擦力,在中学阶段讨论问题时,如无特殊说明,可认为它们数值相等。

  ③效果:阻碍物体的相对运动趋势,但不一定阻碍物体的运动,可以是动力,也可以是阻力。

  (2)滑动摩擦力的大小:

  滑动摩擦力跟压力成正比,也就是跟一个物体对另一个物体表面的垂直作用力成正比。

  公式:F=μFN (F表示滑动摩擦力大小,FN表示正压力的大小,μ叫动摩擦因数)。

  说明:

  ①FN表示两物体表面间的压力,性质上属于弹力,不是重力,更多的情况需结合运动情况与平衡条件加以确定。

  ②μ与接触面的材料、接触面的情况有关,无单位。

  ③滑动摩擦力大小,与相对运动的速度大小无关。

  5、摩擦力的效果:总是阻碍物体间的相对运动(或相对运动趋势),但并不总是阻碍物体的运动,可能是动力,也可能是阻力。

  说明:滑动摩擦力的大小与接触面的大小、物体运动的速度和加速度无关,只由动摩擦因数和正压力两个因素决定,而动摩擦因数由两接触面材料的性质和粗糙程度有关。

物理下册知识点归纳8

  一、探究电阻上的电流根两端电压的关系 试验探究方法:控制变量法

  电阻一定时,导体中的电流跟导体两端的电压成正比;电压一定时,导体中的电流跟导体的电阻成反比

  二、欧姆定律及其应用

  1、欧姆定律:导体中的电流,跟导体两端的电压成正比,跟导体的电阻成反比。

  2、公式: (I= U/ R);式中单位:I→安(A);U→伏(V);R→欧(Ω)。1安=1伏/欧。

  3、公式的理解:①公式中的I、U和R必须是在同一段电路中;②I、U和R中已知任意的两个量就可求另一个量;③计算时单位要统一。

  4、欧姆定律的应用:

  ①、同一个电阻,阻值不变,与电流和电压无关 但加在这个电阻两端的电压增大时,通过的电流也增大。(R=U/I);②、当电压不变时,电阻越大,则通过的电流就越小。(I=U/R);③、当电流一定时,电阻越大,则电阻两端的电压就越大。(U=IR)

  5、电阻的串联有以下几个特点:(指R1,R2串联)

  ①、电流:I=I1=I2(串联电路中各处的电流相等);②、电压:U=U1+U2(总电压等于各处电压之和);③、电阻:R=R1+R2(总电阻等于各电阻之和)如果n个阻值相同的电阻串联,则有R总=nR。(串联电路的总电阻的阻值比任何一个分电阻的阻值都大,原因是几个电阻串联相当于增加了导体的长度,所以总电阻比任何一个都要小)

  ④、分压作用:R1/ R2 = U1/U2,

  ⑤、电流之比为I1∶I2=1∶1 ;

  6、电阻的并联有以下几个特点:(指R1,R2并联)

  ①、电流:I=I1+I2(干路电流等于各支路电流之和)

  ②、电压:U=U1=U2(干路电压等于各支路电压)

  ③、电阻:1/ R=1/ R1+1/R2(总电阻的倒数等于各并联电阻的倒数和)或R=( R1+R2)/ R1R2。如果n个阻值相同的电阻并联,则有R总=R/n(并联电路的总电阻的阻值比任何一个分电阻的阻值都小)

  ④、分流作用:计算I1:I2= R2: R1可用:;

  ⑤、比例关系:电压:U1∶U2=1∶1 ;

  三、测量小灯泡的电阻

  1、实验原理:欧姆定律或者R = U/ I。

物理下册知识点归纳8篇 大学物理基础下册知识点总结相关文章:

初二下册物理工作总结例文3篇(人教版初二物理下册知识点归纳总结)