下面是范文网小编整理的实用的平行四边形教案3篇(平行四边形的优质教案),供大家参考。
实用的平行四边形教案1
教学内容:
人教版五年级上册第六单元86页---88页,
教学目标:
1、通过学生自主探索,动手实践,突出平行四边形面积公式,能正确运用平行四边形的面积公式进行相关的计算。
2、 让学生经历平行四边形面积公式的推导过程,通过操作观察比较等活动初步认识,转化的数学思想,发展学生的空间观念。
3、培养学生,观察分析,概括推导,和解决实际问题的能力。
4、使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的`实用价值。
教学重点:
理解,并掌握平行四边形的面积计算公式,会计算平行四边形的面积,
教学难点:
通过转化的方法理解平行四边形的面积计算公式、
教学过程:
一、回忆旧知,谈话导入
1、今天我们来平行四边形面积的计算,在以前我们学过哪些图形面积的计算?(长方形和正方形)是怎样算的呢?
2、出示,方格纸中的长方形,每小格代表1平方厘米。这个长方形的面积怎样计算呢?
实用的平行四边形教案2
学习目标:
1.能运用综合法证明正方形性质定理。
2.体会证明过程中所运用的归纳概括以及转化等 数学思想方法
课前热身:
矩形、菱形有哪些性质和判别方法?
正方形有哪些性质?你能证明吗?
自主学习
1.证明有一个角是直角的菱形是正方形
2.证明对角线相等的菱形是正方形
4.议一议
①依次连接菱形或矩形四边的中点能得到一个什么图形?先猜一猜,再证明。
②依次连接特殊平行四边形 四边中点呢?
课堂小结
1、顺次连接任意四边形各边的中点得到的四边形是
2、顺次连接矩形各边的'中点得到的四边形是
3、顺次连接菱形各边的中点得到的四边形是
4、顺次连接正 方形各边的中点得到的四边形是
反馈检测:
1.正方形的边长为 ,则它的对角线长 ,若正方形的对角线长为 ,它的边长为 。
2.边长为 的正方形,在一个角 剪掉一 个边长为的 正方形,则所剩余 图形的周长为 。
3.已知:如图 Rt△ABC中,∠ACB=90°,CD为∠ACB的平分线,DE⊥BC于点E,DF⊥AC于点F。
求证:四边形CEDF是正方形。
布 置作业:
A组:习题 4、2 创新设计 B 组 习题4.、2 C 组 背定义
实用的平行四边形教案3
一、教学目标:
1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质。
2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证。
3.培养学生发现问题、解决问题的能力及逻辑推理能力。
二、重点、难点
1.重点:平行四边形的定义,平行四边形对角、对边相等的'性质,以及性质的应用。
2.难点:运用平行四边形的性质进行有关的论证和计算。
3.难点的突破方法:
本节的主要内容是平行四边形的定义和平行四边形对边相等、对角相等的性质。这一节是全章的重点之一,学好本节可为学好全章打下基础。
学习这一节的基础知识是平行线性质、全等三角形和四边形,课堂上可引导学生回忆有关知识。
平行四边形的定义在小学里学过,学生是不生疏的,但对于概念的本质属性的理解并不深刻,所以这里并不是复习巩固的问题,而是要加深理解,要防止学生把平行四边形概念当作已知,而不重视对它的本质属性的掌握。
为了有助于学生对平行四边形本质属性的理解,在讲平行四边形定义前,要把平行四边形的对边、对角让学生认清楚。
讲定义时要强调四边形和两组对边分别平行这两个条件,一个四边形必须具备有两组对边分别平行才是平行四边形;反之,平行四边形,就一定是有两组对边分别平行的一个四边形.要指出,定义既是平行四边形的一个判定方法,又是平行四边形的一个性质。
新教材是先让学生用观察、度量和猜想的方法得到平行四边形的对边相等、对角相等这两条性质的,然后用两个三角形全等,证明了这两条性质。这有利于培养学生观察、分析、猜想、归纳知识的自学能力。
教学中可以通过大量的生活中的实例:如推拉门、汽车防护链、书本等引入新课,使学生在已有的知识和认知的基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣。
实用的平行四边形教案3篇(平行四边形的优质教案)相关文章:
★ 关于平行四边形教案模板5篇(平行四边形教案 小学四年级)