沪科版九年级数学圆知识点3篇 九年级数学沪科版上册知识点

时间:2023-06-11 19:03:00 综合范文

  下面是范文网小编收集的沪科版九年级数学圆知识点3篇 九年级数学沪科版上册知识点,供大家阅读。

沪科版九年级数学圆知识点3篇 九年级数学沪科版上册知识点

沪科版九年级数学圆知识点1

  1.整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

  去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。

  2.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

  合并同类项:

(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。

(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

(3)合并同类项步骤:

  a.准确的找出同类项。

  b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

  c.写出合并后的结果。

沪科版九年级数学圆知识点

沪科版九年级数学圆知识点2

  1、相反数

  实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。

  2、绝对值

  一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于

  零,正数大于一切负数,两个负数,绝对值大的反而小。

  3、倒数

  如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。

  4. 实数与数轴上点的关系:

  每一个无理数都可以用数轴上的一个点表示出来,

  数轴上的点有些表示有理数,有些表示无理数,

  实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。

沪科版九年级数学圆知识点3

  1、圆是定点的距离等于定长的点的集合

  2、圆的内部可以看作是圆心的距离小于半径的点的集合

  3、圆的外部可以看作是圆心的距离大于半径的点的集合

  4、同圆或等圆的半径相等

  5、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

  6、和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线

  7、到已知角的两边距离相等的点的轨迹,是这个角的平分线

  8、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

  9、定理不在同一直线上的三点确定一个圆。

  10、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

  11、推论1:

①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

  12、推论2:圆的两条平行弦所夹的弧相等

  13、圆是以圆心为对称中心的中心对称图形

  14、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

  15、推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

  16、定理:一条弧所对的圆周角等于它所对的圆心角的一半

  17、推论:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

  18、推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

  19、推论:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

  20、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

  21、①直线L和⊙O相交d<r< p="">

②直线L和⊙O相切d=r

③直线L和⊙O相离d>r

  22、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线

  23、切线的性质定理:圆的切线垂直于经过切点的半径

  24、推论:经过圆心且垂直于切线的直线必经过切点

  25、推论:经过切点且垂直于切线的直线必经过圆心

  26、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

  27、圆的外切四边形的两组对边的和相等

  28、弦切角定理:弦切角等于它所夹的弧对的圆周角

  29、推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

  30、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等

  31、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

  32、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

  33、推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

  34、如果两个圆相切,那么切点一定在连心线上

  35、①两圆外离d>R+r

②两圆外切d=R+r

③两圆相交R-r<dr)

④两圆内切d=R-r(R>r)

⑤两圆内含dr)

  36、定理:相交两圆的连心线垂直平分两圆的公共弦

  37、定理:把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

  38、定理:

  任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

  39、正n边形的每个内角都等于(n-2)×180°/n

  40、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

  41、正n边形的面积Sn=pr/2p表示正n边形的周长,r为边心距

  42、正三角形面积√3a2/4a表示边长

  43、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此

  k(n-2)180°/n=360°化为(n-2)(k-2)=4

  44、弧长计算公式:L=n兀R/180

  45、扇形面积公式:

  S扇形=n兀R2/360=LR/2

  外公切线长=d-(R+r)

沪科版九年级数学圆知识点3篇 九年级数学沪科版上册知识点相关文章: