下面是范文网小编分享的19.9勾股定理3篇(勾股定理9.12.15),欢迎参阅。
19.9勾股定理1
由“勾股定理”可知
M2—5班
郑天麒
今天,我来和大家讨论一下“勾股定理”这个问题。
首先,我来介绍一下“勾股定理”的发现者:古希腊的毕达哥拉斯和中国周朝时期的商高。
毕达哥拉斯:古希腊数学家、哲学家。无论是解说外在物质世界,还是描写内在精神世界,都不能没有数学!最早悟出万事万物背后都有数的法则在起作用的,是生活在2500年前的毕达哥拉斯。毕达哥拉斯出生在爱琴海中的萨摩斯岛(今希腊东部小岛),自幼聪明好学,曾在名师门下学习几何学、自然科学和哲学。以后因为向往东方的智慧,经过万水千山来到巴比伦、印度和埃及,吸收了阿拉伯文明和印度文明。
商高:周朝数学家。数学成就据《周髀算经》记载,主要有三方面:勾股定理、测量术和分数运算。《周髀算经》中记载了这样一件事——一次周公问商高:古时作天文测量和订立历法,天没有台阶可以攀登上去,地又不能用尺寸去测量,请问数是怎样得来的?商高回答说:数是根据圆和方的道理得来的,圆从方来,方又从矩来。矩是根据乘、除计算出来的。这里的“矩”原是指包含直角的作图工具。这说明了“勾股测量术”,即可用3∶4∶5的办法来构成直角三角形。《周髀算经》并有“勾股各自乘,并而开方除之”的记载,说明当时已普遍使用了勾股定理。勾股定理是中国数学家的独立发明,在中国早有记载。《周髀算经》还记载了矩的用途:“周公曰:大哉言数!请问用矩之道。商高曰:平矩以正绳,偃矩以望高,覆矩以测深,卧矩以知远,环矩以为圆,合矩以为方。”据此可知,当时善于用矩的商高已知道用相似关系的测量术。“环矩为圆”,即直径上的圆周角是直角的几何定理,这比西方的发现要早好几百年。
其次,我再来介绍一下“勾股定理”: 在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理(Pythagoras Theorem)。数学公式中常写作a+b=c(两直角边分别为,斜边为c)
“勾股定理”的来源:毕达哥拉斯树是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,又给出了另外一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦。常用勾股数3,4,5;6,8,10;5,12,13;8,15,17。
毕达哥拉斯树:毕达哥拉斯树是由毕达哥拉斯根据勾股定理所画出来的一个可以无限重复的图形。又因为重复数次后的形状好似一棵树,所以被称为毕达哥拉斯树。直角三角形两个直角边平方的和等于斜边的平方。两个相邻的小正方型面积的和等于相邻的一个大正方形的面积。利用不等式a^2+b^2≥2ab可以证明下面的结论:三个正方形之间的三角形,其面积小于等于大正方形面积的四分之一,大于等于一个小正方形面积的二分之一。
毕达哥拉斯树
所以说,发现“勾股定理”的确是数学界的一大杰出贡献。最后,我还是要说明,世界上最早运用“勾股定理”的实际上是古巴比伦人,因为:1945年,人们在研究古巴比伦人遗留下的一块数学泥板时,惊讶的发现上面竟然刻有15组能够成“勾股定理”的三边数,其年代远远早于商高之前。
19.9勾股定理2
勾股定理
勾股定理,又称“毕达哥拉斯定理”,是初等几何中的一个基本定理。这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人们的生活实际,以至于古往今来,上至帝王总统,下至平民百姓,都愿意探讨和研究它的证明。它是几何学中一颗闪亮的明珠。
所谓勾股,就是古人把弯曲成一个直角三角形模样的手臂,上臂(即直角三角形的底边)称为“勾”,前臂(即直角三角形的高)称为“股”,所以称之为“勾股”。也许是因为勾股定理十分实用,所以便反复被人们论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理证明专辑。从勾股定理的发现到现在,大约3000年里,勾股定理的证明方法多种多样:有的简洁明了,有的略微复杂,有的十分精彩……本文将会带着大家一起来证明勾股定理并解决一些实际问题。
勾股定理、证明、解决实际问题 什么是勾股定理?
又称商高定理,而更普遍地则称为勾股定理。中国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦。
勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。正因为这样,世界上几个文明古国都已发现并且进行了广泛深入的研究,因此有许多名称。
中国是发现和研究勾股定理最古老的国家之一。中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。还有的国家称勾股定理为“毕达哥拉斯定理”。
在陈子后一二百年,希腊的著名数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理。为了
庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”。
蒋铭祖定理:蒋铭祖是公元前十一世纪的中国人。当时中国的朝代是西周,是奴隶社会时期。在中国古代大约是战国时期西汉的数学著作《蒋铭祖算经》中记录着商 高同周公的一段对话。蒋铭祖说:“…故折矩,勾广三,股修四,经隅五。”蒋铭祖那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”。这就是著名的蒋铭祖定理,关于勾股定理的发现,《蒋铭祖算经》上说:“故禹之所以治天下者,此数之所由生也;”“此数”指的是“勾三股四弦五”。这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的。勾股定理的发现
相传毕达哥拉斯在在一次散步中,偶然看见了地上由几块三角形瓷砖拼成的一个长方形瓷砖,如图:
毕达哥拉斯灵机一动,用手在上面比划了起来。大家看,以直角三角形各边为正方形的边长,可拼出不同的正方形。以直角三角形斜边为正方形边长,可拼出一个这样的正方形:
其面积为:直角三角形斜边的平方
其中有四块直角三角形。
以直角三角形底和高做正方形边长,可拼出一个这样的正方形: 其面积为:底边(高)的平方 其中有两块直角三角形。
因为长方形瓷砖面积不变,所以所有第二种正方形面积和与所有第一种正方形面积和相等。因此毕达哥拉斯得出这样一个结论:在一个直角三角形中,底边的平方+高的平方=斜边的平方。这就是勾股定理。
勾股定理的证明
勾股定理证明方法有很多,下面这种是一位名叫茄菲尔德的美国总统证明的:
勾股定理的运用
说了这么多,也许有人会问“勾股定理有什么用呢?”
其实,勾股定理对我们的生活帮助可不小!尤其是在测量、建筑方面。下面,让我们来解决一下实际问题吧!
有一座山,高500米。在山脚下,有两个登山口,它们之间的距离是2400米。登山路沿着山的斜面修建(如图),我们从左面的登山口上山,到山顶的距离是多少?
这道题看似与勾股定理没什么关系,但是仔细看图,这是一个直角三角形!
已知直角三角形的斜边是2400米,要求其中一条直角边,我们应先做辅助线,将这座山分成两半:
这样,问题就转化成了求这左边这半直角三角形的斜边。原底边的长度是2400,现在是一半,即为1200,另一条直角边是500。根据勾股定理,底边2+高2=斜边2,计算时,把1200写成12,把500写成5,即122+52=25+144=169,多少的平方是169呢?答案是13,因为前面的1200和500缩小了100倍,所以13要扩大100倍,即1300。所以登山路的长度是1300米。总结
这就是勾股定理的妙用,还不止这些。尤其是测量三个地方之间的距离时,勾股定理是我们的一大帮手。总之,勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。它的主要意义有:
1、勾股定理是联系数学中最基本也是最原始的两个对象——数与形的第一定理。
2、勾股定理导致不可通约量的发现,从而深刻揭示了数与量的区别,即所谓“无理数"与有理数的差别,这就是所谓第一次数学危机。
3、勾股定理开始把数学由计算与测量的技术转变为证明与推理的科学。
4、勾股定理中的公式是第一个不定方程,也是最早得出完整解答的不定方程,它一方面引导到各式各样的不定方程,另一方面也为不定方程的解题程序树立了一个范式。
19.9勾股定理3
勾股定理
一、教材分析
勾股定理在初中数学中扮演着很重要的角色。在以后的学习中会经常用到有关勾股定理的知识,本节课我们主要来探究勾股定理的由来。
二、教学目标
1.经历探究勾股定理的过程,发展合情推理的能力,体会数形结合的思想。2.能说出勾股定理并能运用勾股定理解决简单的问题。
3.经历多种拼图方法验证勾股定理的过程,发展用数学的眼光观察现实世界和有条理地思考与表达的能力,感受勾股定理的文化价值。
4.掌握勾股定理,能够熟练地运用勾股定理由直角三角形的任意两边求得第三边.能根据一已知边和另两未知边的数量关系通过方程求未知两边。
三、教学重点难点
教学重点:勾股定理的推导的过程内容勾股定理的具体内容 教学难点:勾股定理的内容以及应用
四、教学方法
本节的教学分为五步:情境引入——定理探索——定理应用——巩固练习——课堂拓展的模式展开。教师引导学生从已有的知识和生活经验出发,提出问题并与学生共同探索、讨论。让学生经历知识的形成与应用的过程,从而更好地理解勾股定理的意义。
五、教具学具
小黑板
正方形和直角三角形的模型若干
六、教学过程
(一)创设情境,设疑激思 如图,由4个边长为a,b,c的直角三角形拼成一个正方形,中间有一个正方形的开口(图中阴影部分),试用不同的方法计算这个阴影部分的面积,你发现了什么?
看到这个题目,学
生感到十分的熟悉,这是
七年级下册学习因式分
解的时候见过的题目。学
生们分组讨论,课堂气氛十分的活跃,不久得出了
答案。
分析:因为整个图形是一个边长为c 的正方形
所以
S全=c2 也可以分割求这个图形的面积
S全=4S直角△+S阴
=4×ab+(a-b)2
=2ab+a2-2ab+b2
= a2+b2
于是有a2+b2=c2
得到了以上一个结论,此时不急于总结结论从而引出勾股定理,因为仅仅一个题目不足以说明问题。
于是提出“类似于上面的拼图问题,你们还记得多少。同学们于是分组讨论,另一个类似的拼图问题。如图,游4个边长分别a,b,c的直角三角形拼成一个正方形用不同的方法,计算这个正方形的面积,你发现了什么?
S2ab+ c2
所以a+2ab+b=2ab+ c2
所以a2+b2=c2
【设计意图】本段采用小组合作学习方式进行,学生按教师事先分好的小组以小组为单位进行合作学习,每个小组选择一种证法进行研究。每个小组有4名成员,位置相邻,便于所有的人都能参与到明确的集体任务中。小组成员之间相互依赖、相互沟通、相互合作,共同负责,从而达到共同的目标。在集体学习的基础上,每组推选一位同学代表本组进行学习交流,主要时将本组证法的思路讲清,同时同组同学可以补充或纠错。其他小组此时则通过聆听对他组的证法进行学习。
(二)自己总结,得出结论
引导学生思考问题:是否一般的直角三角形都具有上述特征呢?
于是我们得到结论:直角三角形两直角边的平方和等于斜边的平方。
如图:我们有 a2+b2=c2
2分析:因为S全=(a+b)2=a2+2ab+b2
全
=4×ab+ c2= 教师在此基础上介绍“勾,股,弦”的含义,进行点题,结合直角三角形,让学生从中体验勾股定理蕴含的深刻的数形结合思想。
【设计意图】八年级学生能独立思考,有强烈的探究愿望,并能在探索的过程中形成自己的观点,能在交流意见的过程中逐渐完善自己的观点。故本段设计遵循“构建主义”的学习理念,以学生为中心,强调学生对知识的主动探索、主动发现和对所学知识意义的主动建构。教师只是给学生提供一定的学习“情景”,在此“情景”中,学生通过“协作”、“会话”和“意义建构”进行有效学习。
(三)勾股定理简单的应用
1、例题精讲
如图Rt△ABC
∠ACB=90。以三角形三边向外作三个正方形。面积分别为S1,S2,S3,试探索S1,S2,S
3三者之间的关系
分析:因为Rt△ABC中,∠ACB=900 所以a2+b2=c2(勾股定理)因为S1=b2,S2=a2,S3=c2 所以S1+S2=S3
2、巩固练习(1)求下列直角三角形中未知边的长
(2)求下列图中未知数x,y,z的值
3、拓展与延伸
(1)一个直角三角形的两条直角边分别为3和4,则另一
条
边
是
(2)一个直角三角形的两条边分别为3和4,则另一条边是
(3)一个门框的尺寸如图所示,一块长3m,宽的薄木板能否从门框内通过?为什么?
(4)将梯子AC斜靠在墙上,BC长为米,梯子的长为米。求梯子上端A到墙的底端B的距离.(精确到米)
【设计意图】课堂从广义上讲是开放的,教师在授课时,不仅要传授学生必要的知识,更要打开学生的思路,给学生提供更为广阔的空间,引领学生课后去探索,从而让学生真正成为学习的主人。在当今的网络社会,学生尤其要善于在网上“淘金”,满足自己学习的需要。网上学习必将成为未来的最为重要的学习方式。
七、课堂小结 这节课你有哪些收获?你能谈谈你对这节课的感受吗?
【设计意图】一个好的小结,不只是对课堂内容的简单回顾,还是对所用数学思想、方法的总结,学生通过自己的总结,不仅促进了对知识的理解,培养了数学表达能力和概括能力,而且通过归纳反思,能有效地把握知识的脉搏,找到知识之间的内在联系,这对于学生主动构建良好的认知结构大有裨益,也让学生从中学会感悟数学。
八、课堂作业
书上第47页习题,2,3 【设计意图】巩固勾股定理,进一步体会定理与实际生活的联系。促进学生学知识,用知识的意识。新课程标准提倡课题学习(研究性学习),通过课题学习与研究更多地把数学与社会生活和其他学科知识联系起来,使学生进一步体会不同的数学知识以及数学与外界之间的联系,初步学习研究问题的方法,提高学生的实践能力和创新意识。
九、教学反思
我认为,本节课较为成功之处在于以下几个转变:
1、教的转变
本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生探索、发现结论后,利用习题加以巩固,激发学生自觉探究数学问题,体验发现的乐趣。
2、学的转变
学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层 面,而是站在研究者的角度深入其境。
3、课堂氛围的转变
整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的 思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以“对话”、“讨论”为出发点,以互助合作为手段,解决问题为目的,让学生在宽松的环境中自主探索,获得成功!
19.9勾股定理3篇(勾股定理9.12.15)相关文章:
★ 证明勾股定理多种常用方法3篇(勾股定理的证明方法最简单的6种)