关于平行四边形教案范文7篇(平行四边行的教案)

时间:2023-10-27 16:22:00 教案

  下面是范文网小编收集的关于平行四边形教案范文7篇(平行四边行的教案),以供参考。

关于平行四边形教案范文7篇(平行四边行的教案)

关于平行四边形教案范文1

  教学目标:

  1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.

  2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.

  3.对学生进行辩诈唯物主义观点的启蒙教育.

  教学重点:理解公式并正确计算平行四边形的面积.

  教学难点:理解平行四边形面积公式的推导过程.

  学具准备:每个学生准备一个平行四边形。

  教学过程:

  一、导入新课

  1、什么是面积?

  2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?根据长方形的面积=长宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。

  二、民主导学

  (一)、数方格法

  用展示台出示方格图

  1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)

  2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?

  请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。

  2、请同学看方格图填80页最下方的表,填完后请学生回答发现了什么?

  小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。

  (二)引入割补法

  以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。

  (三)割补法

  1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?

  2、然后指名到前边演示。

  3、教师示范平行四边形转化成长方形的过程。

  刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。

  ①先沿着平行四边形的高剪下左边的.直角三角形。

  ②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。

  ③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。

  请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)

  4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)

  您现在正在阅读的五年级上册《平行四边形的面积》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!五年级上册《平行四边形的面积》教学设计①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?

  ②这个长方形的长与平行四边形的底有什么样的关系?

  ③这个长方形的宽与平行四边形的高有什么样的关系?

  教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。

  5、引导学生总结平行四边形面积计算公式。

  这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长宽)

  那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底高。)

  6、教学用字母表示平行四边形的面积公式。

  板书:S=ah

  说明在含有字母的式子里,字母和字母中间的乘号可以记作,写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah,或者S=ah。

  (6)完成第81页中间的填空。

  7、验证公式

  学生利用所学的公式计算出方格图中平行四边形的面积和用数方格的方法求出的面积相比较相等 ,加以验证。

  条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)

  三、检测导结

  1、学生自学例1后,教师根据学生提出的问题讲解。

  2、判断,并说明理由。

  (1)两个平行四边形的高相等,它们的面积就相等()

  (2)平行四边形底越长,它的面积就越大()

  3、做书上82页2题。

  4、小结

  今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?

  5、作业

  练习十五第1题。

  附:板书设计

  平行四边形面积的计算

  长方形的面积=长宽 平行四边形的面积=底高

  S=ah S=ah或S=ah

关于平行四边形教案范文2

关于平行四边形教案范文3

  教材分析

  “平行四边形的面积”是本册书第五单元“多边形的面积的计算”第一小节的内容。前面学过了长方形和正方形的面积计算,平行四边形和三角形的特征及底和高的概念,几何图形的认识贯穿在整个小学数学教学中,并且是按照从易到难的顺序呈现的。所以,要使学生理解掌握好平行四边形面积公式,必须以长方形的面积和平行四边形的底和高为基础,而且这部分知识的学习运用会为学生学习后面的三角形、梯形等平面图形的面积奠定良好的基础

  学情分析

  1. 学生已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。

  2. 但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。

  教学目标

  1.知识与技能目标:了解平行四边形面积的含义,掌握平行四边形面积的计算公式,会计算平行四边形的面积并能解决实际中的问题。

  2.过程与方法目标:

  (1)通过操作、观察、讨论、比较活动,让学生初步认识图形转化来计算平行四边形面积的过程。

  (2)通过平行四边形面积公式推导过程的讲解,培养学生在动手操作、探索的过程中形成观察、分析、概括、推导能力,发展学生的空间观念。

  3.情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系。

  教学重点和难点

  重点:理解掌握平行四边形的面积计算公式,并能正确运用。

  难点:把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。

  教学过程

  (一)情境引入,以旧探新

  这是一幅街区图,上部是住宅小区,中部是街道,下部是学校的大门内外,图上的学校将是我们城关一小未来的面貌。为了使我们的学校变得更美丽,学校准备在大门前修建两个花坛,那要考虑什么实际问题呢?(修多大的花坛,也就是要计算它们的面积有多大)。(课件依次出现)

  这块花坛既不是长方形也不是正方形,如何求出这块地的面积?

  为了解决上面的问题我们必须知道如何计算一个平行四边形的面积,今天我们就来一起学习平行四边形的面积。(板书:平行四边形的面积)

  (二)自主探究

  方法一:用数方格的方法求平行四边形的面积

  以前我们用数方格的方法求长方形的面积。今天,我们也用同样的方法求平行四边形的面积。(出示课前准备好的方格纸,每个方格按1㎡)

  1.用方格纸制作成的平行四边形放在边长是1米的方格中,数一数占几个方格(不满一格按半格计算)平行四边形的面积就是几平方米。这块空地的面积是24平方米。

  根据这个例子,让同学将书本80页下面的表格补充完整,也会发现上面的规律!

  2.填表并讨论:用数方格的.方法可以得到了一个平行四边形的面积,但是这个方法比较麻烦,也不是处处适用。

  (1)观察上表你发现了什么?(观察得出长方形的长和平行四边形的底相等,长方形的宽和平行四边形的高相等,它们的面积也相等,)

  (2)根据你的发现你能想到什么?(平行四边形的面积就等于底乘高)

  (三)动手操作,验证猜想,得出结论

  方法二:“割补”法:通过数方格我们发现这个平行四边形的面积等于底乘高,是不是所有平行四边形的面积都可以用底乘高来进行计算呢?这就是我们这节课要研究的中心内容:平行四边形面积的计算。

  1.提出假设:能不能把它转化成我们学过的图形呢?(用割补法转化为长方形)

  2.动手实验:(1)提出要求:请同学们拿出准备好的多个平行四边形纸片及剪刀,自己动手,运用所学过的割补法将平行四边形转化为长方形。那样的话我们就能不用方格就可以算出平行四边形的面积了。(在操作过程中教会学生运用了一种重要的数学方法“转化”,就是把一个平行四边形转化成了一个长方形,“转化”是一种重要的数学思想方法,在以后学习中会经常用到。)

  (2)学生实验操作,教师巡视指导。

  3.小组讨论:观察拼出来的长方形和原来的平行四边形你发现了什么?

  (1)平行四边形剪拼成长方形后,什么变了?什么没变?(形状变了,面积没变)

  (2)剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?(长与原来平行四边形的底相等,宽与原来平行四边形的高相等。)

  (3)剪拼成的长方形面积怎样计算?得出:(面积=长×宽)

  (4)平行四边形的面积公式怎样表示?为什么?(平行四边形的面积=底×高)

  4.全班交流推导公式:

  (1)谁愿意把你的转化方法说给大家听呢?请上台来交流!

  (2)有没有不同的剪拼方法?(继续请同学演示)。

  研究得出:沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形拼合成一个长方形。

  (3)板书平行四边形面积推导过程

  (4)字母公式:在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,那么平行四边形的面积计算公式用字母表示出来就是S=ah

  三、运用公式,解决实际问题

  知道了平行四边形的面积公式,我们就可以利用它方便地计算平行四边形的面积了。

  1.出示书上82页的1题,请大家做一做。

  2.汇报交流:谁来说一说你是怎么做的?

  3.强化认识:那请大家想一想,要求平行四边形的面积,我们必须知道哪些条件?(底和高,强调高是底边上的高)

  四、巩固练习

  1、试一试

  计算下列平行四边形的面积,与同学说说你的方法。

  35cm 20dm 4.8m

  26cm 28dm 5m

  公式: 公式: 公式:

  列式: 列式: 列式:

  2、我能填得准。

  (1)平行四边形的面积公式用字母表示为( )。

  (2)一个平行四边形的底是9cm,对应的高是4cm,面积是( )。

  五、课堂总结

  反思一下刚才我们的学习过程,你有什么收获?

关于平行四边形教案范文4

  【回顾与思考】:

  活动一:

  准备两个全等的三角形,将它们相等的一组边重合,得到一个四边形.

  (1)你得到了怎样的四边形?与同伴交流一下

  (2)观察拼出的这样一个四边形,这个四边形的对边有怎样的位置关系?为什么?

  (3)平行四边形的定义: 的四边形叫做平行四边形.

  平行四边形 连成的'线段叫做对角线

  如图,四边形ABCD是平行四边形,

  记作” ”

  活动二:(1)观察你所拼的平行四边形中,有哪些相等的线段、相等的角?为什么?

  (2)平行四边形的性质:平行四边形的对边

  平行四边形的对角

  几何语言:

  ∵四边形ABCD是平行四边形(已知)

  ∴AB= ,BC= ( )

  ∠A = ,∠B = ( )

  【知识应用】:

  1. □ABCD中,AB=3,BC=5,则AD= CD= 。

  2. □ABCD中,∠B=60°,则∠A= ,∠C= ,∠D= 。

  3. 如图:四边形ABCD是平行四边形。

  (1)边AB、BC的长度

  (2)求∠D、∠C度数。

  【当堂反馈(小测)】:

  1.已知□ABCD中,∠B=70°,则∠A=______,∠C=______,∠D=______.

  2.在□ABCD中,∠A +∠C =270°,则∠B=______,∠C=______.;

  3.在□ABCD中,AB=3,BC=4,则□ABCD的周长等于_______.

  4.平行四边形的周长等于56 cm,两邻边长的比为3∶1,那么这个平行四边形较长的边长为_______.

  5.已知,如图,□ABCD中,∠A=70°,AD=5 cm,求∠B,∠C,∠D的度数及BC的长度。

  6.已知,如图,□ABCD中,∠CAD=20°,∠D=50°,求∠B,∠BCD的度数

  【巩固提升】:

  1、已知□ABCD中,∠B=70°,则∠A =______,∠D =______。

  2、在□ABCD中,AB=3,BC=4,则□ABCD的周长等于_______。

  3、在□ABCD中,已知BC=8,周长等于24, 则CD=_______。

  4、 在□ABCD中,∠A=65°,则∠D的度数是 ( )

  A. 105° B. 115° C. 125° D. 65°

  5、在□ABCD中,∠B比∠A大20°,则∠D的度数是 ( )

  A. 80° B. 90° C. 100° D. 110°

  6、一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是( )

  A、88°,108°,88°B、88°,104°,108°

  C、88°,92°,88° D、88°,92°,92°

  7、□ABCD中,∠A:∠B:∠C:∠D的值可以是( )

  A、1:2:3:4 B 、1:2:2:1 C、2:2:1:1 D、 2:1:2:1

  8、已知,如图,□ABCD中,∠A=65°,AD=6 cm,求∠B,∠C,∠D的度数及BC的长度。

  9、如图,□ABCD中,∠ABC的平分线交AD于E,若∠AEB=20°,求∠D的度数

  10.四边形ABCD是平行四边形,它的四条边中哪些线段可以通过平移而互相得到?

关于平行四边形教案范文5

  教学目标

  教学目标:

  知识目标:通过操作活动,经历推导四边形面积计算公式的过程;能运用公式计算相关图形的面积,并解决一些实际问题。

  能力目标:通过实际操作发展学生的观察、操作、推理、交流能力;培养运用转化的方法解决实际问题的能力。

  情感目标:培养学生勇于探索、克服困难的精神;感受数学的美。

  教学重点和难点

  教学重、难点:

  理解平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式。

  培养学生运用公式解决实际问题的能力。

  教学过程

  (一)创设情境,设疑引入

  谈话:出示两个美丽的花坛(课件呈现)。

  提问:请大家观察一下,这两个花坛哪一个大呢

  然后给出长方形的长和宽让学生计算长方形的面积。

  提问:那平行四边形的面积你会算吗?从而导入新课。

  (二)操作探索,获取新知

  数方格感知平行四边形和长方形之间的关系

  (1)数方格,用数方格的方法来求平行四边形和长方形的面积,(电脑出示)

  (2)汇报交流自己的发现。

  小结:用数方格的方法不能满足我们的实际需要,如果我们能像长方形那样有一个计算平行四边形面积的公式就容易解决了。

  2、应用“转化”思想,引入割补、平移法

  (1)小组合作探究:想办法充分利用手中的学具把平行四边形转化成会学算面积的图形。(这时教师巡视,了解情况)

  (2)精彩展示:要求边讲边操作。

  提问:为什么都要转化成长方形?

  为什么一定要沿着高剪开呢?

  接着电脑演示其它方法,渗透割补、平移法

  3、建立联系,推导公式

  (1)小组合作探索:

  a、原来的平行四边形转化成长方形后,什么变了?什么没变?

  b、拼成长方形的长与原来平行四边形的底有什么关系?

  c、拼成长方形的宽与原来平行四边形的高有什么关系?

  d、能否根据长方形的面积公式推导出平行四边形的面积计算公式?(平行四边形的面积= )

  (2)交流平行四边形和长方形之间的联系:平行四边形的面积=长方形的面积;长=底;宽=高;平行四边形的`面积(公式)=底×高(板书)

  提问:用字母怎么表示呢?自学课本。

  学生回答s=ah(板书)

  提问:s、a、h分别表示什么呢?

  提问:要计算平行四边形的面积必须知道什么?(演示不是对应的底和高),这样能求出它的面积吗?那底和高必须是什么样的关系?(对应)

  (三)巩固应用,内化新知

  前面的花坛题

  课本第2题:你能想办法求出下面两个平行四边形的面积吗?

  拓展题:先分别口算出下面图中两个平行四边形的面积,然后看你发现了什么?

  (四)课堂总结,深化新知

  师:同学们,通过今天的学习,你有什么收获呢?

关于平行四边形教案范文6

  一、创设情境,呈现真实

  师:我们一起回忆一下,已经学过关于长方形的哪些知识?(出示长方形,并且让学生回忆有关它的周长和面积的知识)

  师:今天我们来研究平行四边形的面积。这里有两个图形,请大家先测量有关数据,再计算它们的面积。(图略)

  生活动后汇报如下:

  长方形的长6厘米,宽4厘米,长方形的面积=6×4=24平方厘米

  (1)平行四边形底6厘米,另一条底4厘米,它的面积=6×4=24平方厘米

  (2)平行四边形底6厘米,高3厘米,它的面积=6×3=18平方厘米

  二、否定错误猜想

  1、师:计算同一个平行四边形的面积,大家有几种不同的想法,可以肯定其中必定有错误。请大家看清楚,每种猜想的意思,然后作出判断。

  你觉得哪种更合理?能不能举个例子,证明哪种是错误的。

  生:我觉得可以用底乘底来计算。我们知道平行四边形容易变形,如果把一条底边拉直,就变成了长方形,长方形的面积等于长乘宽,所以平行四边形的面积等于底乘底。

  师:这位同学想到了平行四边形容易变形的特征。大家觉得有道理吗?

  生:老师,我不同意这样的想法,按照他的说法,如果把这个平行四边形压扁,它的面积难道还是24平方厘米吗?

  2、师:(演示平行四边形变形的过程)请同学们仔细观察,平行四边形在变形过程中,什么发生了变化?什么始终没变?

  生:我发现平行四边形在变形过程中,面积边了,而两条边的长度始终不变。所以用“底乘底”计算平行四边形的面积是错误的。

  师:在平行四边形变形过程中,随着面积的变化,什么也同时发生了变化?(再次演示长方形渐变成平行四边形。)

  生:(兴奋地)高!

  师:现在,你觉得平行四边形的面积与它的什么有关?

  生:我觉得平行四边形的面积与它的高有很大的关系。

  3、师:用什么办法可以比较它们的面积大小呢?

  生:把平行四边形多出来的三角形剪下来,补到另一边,看出长方形大,平行四边形小。

  师:变成长方形后,面积大小变了没有?

  生:没有

  师:那么要计算平行四边形的面积,应该怎么办?

  生:要求出平行四边形的面积,就知道长方形的面积,所以这个平行四边形的面积应是6乘3来计算,而不是6乘4。

  生:6是长方形的长,也是平行四边形的底,3是拼成后的长方形的宽,也是平行四边形的'高,所以第二种猜想是正确的。

  师:这位同学把“计算平行四边形的面积”这个问题转化成了“计算长方形的面积”,利用旧知识解决了新问题。

  三、归纳计算方法

  师:是不是所有的平行四边形都可以剪拼成长方形呢?请同学们任意拿一个平行四边形,想一想,怎样可以把它转化成一个长方形。

  根据学生反馈情况进行课件演示,出现几种拼法(略)

  师:这几种剪拼方法有什么相同之处?

  生:都是先沿着平行四边形底边上的高剪开,再拼成一个长方形。

  生:在剪拼过程中,图形的形状变了,面积不变。

  师:为什么平行四边形的面积可以用“底乘高”来计算?

  生:因为长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,长方形面积等于长乘宽,所以平行四边形面积等于底乘高。

  师:这个平行四边形公式是不是适用于所有的平行四边形呢?为什么?

  生:对任何一个平行四边形,只要沿着底边上的高剪开,一定都可以拼成长方形,所以平行四边形的面积=底×高。

  师:我们用S表示平行四边形的面积,用a表示底,用h表示高,那么计算平行四边形的面积公式用字母表示为S=ah。

  四、反思探究过程

  师:今天我们遇到了一个什么新问题?我们是怎样解决的?有什么收获?

关于平行四边形教案范文7

  教材分析

  本节课是在学生已经掌握平行四边形的特征,理解并能正确运用长方形面积计算公式的基础上进行教学的,在本节课中学生要经历平行四边形面积计算公式的推导过程,理解平行四边形的面积计算公式,为今后学习三角形、梯形等平面图形面积计算公式奠定基础。

  教材首先以比较花坛大小的情境引入,充分体现数学源于生活的课程理念;通过数格法,比较平行四边形和长方形的面积大小,再通过割补法,将平行四边形转化成与它面积相等的长方形,从而渗透“转化”的数学思想。

  教学目标

  1.探索平行四边形的面积公式,掌握并能正确运用公式解决实际问题。

  2.通过操作、观察、比较,培养学生分析、抽象概括能力,渗透转化思想。

  3.在探索的过程中获得成功的体验,激发学生学习数学的兴趣。

  根据目标的定位,我将“掌握平行四边形的面积计算公式”作为本节课的重点,而本课要突破的难点是“经历平行四边形面积公式的探究过程”

  教学方法

  《数学课程标准》提出了重视学生学习过程的全新理念。在本节课中我主要以引导探究法为主,以学生参与活动为主线,引导学生大胆猜想、通过数格子和剪拼验证、观察比较,使小组教学和班级教学紧密联系,并通过自主探索、合作交流发展能力。

  教学过程

  教学环节

  教学活动

  设计意图

  一、创设情境,引入新知

  二、动手实践、探索新知

  三、尝试练习,提升能力

  四、课堂小结,梳理提高

  以争论面积大小的故事情境引入,引出要比较大小就得先算面积。回顾了长方形面积计算公式=长×宽,并通过回忆长方形

  (一)提出猜想

  【提问】平行四边形的面积可能等于什么?

  受长方形面积公式的迁移学生可能会出现两种答案:①底×高 ②底×斜边(学生争论)

  (二)动手验证

  (课前准备好剪刀、方格纸、尺子、两个图形纸的学具,放在信封里。)请大家拿出信封,小组合作,验证你的猜想。教师巡视并扮演好合作者的角色,给予适当地指导。

  1.多数学生会选用数格法,得到两个图形面积相等。

  【追问】如果让你测量花坛的面积,你也用数格法吗?

  【询问】我们能不能把平行四边形转化成我们熟悉的图形,再计算它的面积呢?

  再次验证,并提出活动要求

  (1) 你把平行四边形转化成什么图形?

  (2) 什么变了,什么没变?

  (3) 平行四边形的面积怎么算?

  2.交流反馈(一个演示,一个讲解)

  【提问】看懂这种方法吗?有谁的和他不同?

  (三)动眼观察

  【提问】这两种方法有什么共同之处?

  学生可能会发现,都是沿着高剪的,因为只有这样才会有直角,而且都拼成了长方形。

  【追问】什么变了,什么没变?

  学生发现,形状变了,面积没有变。因为平行四边形的底就相当于长方形的长,平行四边形的高就相当于长方形的宽,根据长方形的面积等于长乘宽,所以得到平行四边形的面积等于底乘高。

  (小组内、同桌间说一说变化的过程,加深对公式的.理解)

  (四)自学课本

  引导学生自学课本,用字母表示公式。

  S=ah(用S表示平行四边形的面积,用a表示平行四边形的底,h表示平行四边形的高)

  【追问】要求平行四边形的面积,必须知道什么?

  (一)基本技能训练

  (1) 计算平行四边形的面积

  (2) 蓝色线这条高的长度

  (二)解决实际问题

  快乐公园由三个高都是16m的平行四边形组成,其中中间是一条长河,两边种植花草树木。(如下图)

  (三)提升思维能力

  1.在方格纸上画一个面积是24平方厘米的平行四边形

  2.如果这个平行四边形的底是4厘米,那么能画出几种?

  这节课你学习了什么,有哪些收获?

  教材是以比较花坛大小的情境导入,但我认为这一情境不是很贴切学生的认知,教师在尊重教材的同时但又不能拘泥于教材,因此我对教材进行创造性地改编。

  感受数格法不受用,从而激发起探究欲望。

  本环节以“大胆猜想—动手操作—动眼观察—动脑思考”为主线,引导学生带着猜想自主探究,让不同起点的学生都能经历平行四边形面积公式的推导过程,体验转化思想,发展探索的能力,使学生在做数学的过程中感悟数学。

  打破学生思维定势,感受高和底的对应。

  发散学生思维,同时渗透变与不变的辩证唯物思想,感受同底等高。

  通过对全课进行总结,帮助学生梳理知识,形成知识体系,并帮助学生对自己的学习方法进行小结。

关于平行四边形教案范文7篇(平行四边行的教案)相关文章:

实用的平行四边形教案模板4篇(平行四边形 教案)

平行四边形教案模板5篇(19.2平行四边形教案)

实用的平行四边形教案3篇(平行四边形的优质教案)

平行四边形教案6篇 平行四边形和梯形教案

平行四边形教案模板6篇 小学平行四边形特性教案

平行四边形教案模板5篇 19.2平行四边形教案

有关平行四边形教案范文5篇(平行四边形的面积教案)

关于平行四边形教案模板5篇(平行四边形教案 小学四年级)

平行四边形教案范文5篇 特殊的平行四边形教案

平行四边形教案7篇 平行四边形和梯形教案